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A B S T R A C T

Deepwater snappers and groupers are valuable components of many subtropical and tropical fisheries globally
and understanding the habitat associations of these species is important for spatial fisheries management.
Habitat-based species distribution models were developed for the deepwater snapper-grouper complex in the
main Hawaiian Islands (MHI). Six eteline snappers (Pristipomoides spp., Aphareus rutilans, and Etelis spp.) and one
endemic grouper (Hyporthodus quernus) comprise the species complex known as the Hawaiian Deep Seven
Bottomfishes. Species occurrence was recorded using baited remote underwater video stations deployed between
30 and 365 m (n = 2381) and was modeled with 12 geomorphological covariates using GLMs, GAMs, and BRTs.
Depth was the most important predictor across species, along with ridge-like features, rugosity, and slope. In
particular, ridge-like features were important habitat predictors for E. coruscans and P. filamentosus. Bottom
hardness was an important predictor especially for the two Etelis species. Along with depth, rugosity and slope
were the most important habitat predictors for A. rutilans and P. zonatus, respectively. Models built using GAMs
and BRTs generally had the highest predictive performance. Finally, using the BRT model output, we created
species-specific distribution maps and demonstrated that areas with high predicted probabilities of occurrence
were positively related to fishery catch rates.

1. Introduction

Snappers (Family Lutjanidae) and groupers (Family Serranidae) are
commercially important marine species in many tropical-subtropical
fisheries. These fishes are often characterized as large, long-living
species with high site fidelity and thus are vulnerable to fishing pres-
sure (Jennings et al., 1999; Coleman et al., 2000; Morris et al., 2000;
Newman et al., 2016). For many countries in the Indo-Pacific region,
there has been limited fisheries management of deepwater snappers and
groupers and assessments of stock status (Newman et al., 2016). Im-
provements to increase and standardize fisheries, habitat, and life his-
tory data for this species complex are ongoing and top priorities for the
Indo-Pacific region (Newman et al., 2015).

In the main Hawaiian Islands (MHI), the deepwater snapper-
grouper or “bottomfish” complex is a commercially and culturally va-
luable fishery (Pooley, 1993; Hospital and Pan, 2009; Hospital and
Beavers, 2012). The Hawaiian Deep Seven Bottomfishes is a state and
US federally managed species complex consisting of six eteline snappers
and one endemic grouper: Etelis coruscans, E. carbunculus, Pristipomoides

filamentosus, P. sieboldii, P. zonatus, Aphareus rutilans, and Hyporthodus
quernus. Two species, E. coruscans and P. filamentosus, comprise the
majority of the Deep Seven bottomfish catch (Brodziak et al., 2014).
The major component of fisheries data is a 60+ year time series of
catch and effort data, with ongoing efforts to establish a fisheries-in-
dependent surveying program using invasive and non-invasive techni-
ques (Richards et al., 2016). Regulations for this fishery include: annual
catch limits, size and gear restrictions, bag limits, fisher and boat re-
gistrations, and permanent restricted fishing areas.

Habitat information is an important piece of knowledge that in-
forms the spatial management of fisheries. Depth is a consistent habitat
feature found to delineate bottomfish species distributions (Sundberg
and Richards, 1984; Ralston and Williams, 1998; Martinez-Andrade,
2003; Gomez et al., 2015). Misa et al. (2013) and Moore et al. (2016)
established preliminary habitat associations for the top four commer-
cially important species in the MHI (E. carbunculus, E. coruscans, P. fi-
lamentosus, and P. sieboldii). They noted depth segregations among the
species complex, and high-relief, hard-bottom areas as important ha-
bitat features. Raised physical features like promontories and pinnacles
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allow for an upward advection and retention of deeper-dwelling zoo-
plankton to shallower waters that may attract fish predators, and is
concurrent with submersible observations of bottomfishes (e.g., P. fi-
lamentosus) near underwater headlands, especially in upcurrent lo-
calities (Ralston et al., 1986; Kelley et al., 2006). Macrohabitat features
like substrate rugosity and natural cavities also serve as important
predator rufugia (Kelley and Ikehara, 2006).

Our main research objective was to develop habitat-based species
distribution models for each of the Hawaiian Deep Seven Bottomfishes
throughout the MHI. Species occurrence was collected using Baited
Remote Underwater Videos (BRUVs) deployed between 30 and 365 m
across the MHI. Probability of occurrence was modelled with various
benthic habitat landscape variables using Generalized Linear Models
(GLMs), Generalized Additive Models (GAMs), and Boosted Regression
Trees (BRTs). To account for possible spatial autocorrelation (SAC) in
the model residuals, a residual autocovariate (RAC) model (Crase et al.,
2012, 2014) was included as an additional model to the GLMs, GAMs,
and BRTs. The model output was then interpolated to the entire MHI
between 50 and 400 m depth, resulting in a predictive map of prob-
ability of occurrence for each of the seven species. Finally, as an ap-
plication of the species distribution models, we related model output
with fishery catch rates within statistical fishery reporting areas to
examine whether model predictions of species hotspots were positively
related to fishery yields.

2. Material and methods

2.1. Data sources

Presence-absence data for each of the seven species were collected
at 2381 sites from 2007 to 2015 across the MHI (Fig. 1) ranging
30–365 m via Bottom Baited Camera Stations (BotCam; Merritt et al.,
2011). The main goal of the BotCam surveys was to monitor bottomfish
populations inside and adjacent to bottomfish restricted fishing areas
(BRFAs). BotCam locations were selected using a stratified-random
design with protection (inside or outside of BRFAs) and coarse habitat
features (soft-bottom/low slope, hard-bottom/low slope, soft-bottom/
high slope, hard-bottom/high slope (Misa et al., 2013)) as the sampling
strata. The BotCam system used two ultralow-light video cameras that
recorded under ambient light conditions and was propped 3 m above
the sea floor to optimize the field of view for observations. At each site,
species presence was recorded over a 30–40 min soak period, a soak

period found to be adequate for stereo-video surveys for these species
(Misa et al., 2016). Full details on the BotCam protocol are provided in
Misa et al. (2013), Moore et al. (2013) and Sackett et al. (2014). Species
occurrence as a percentage of the total dataset ranged from 5.45% for
H. quernus to 28.3% for P. filamentosus. Bathymetry layers at 5-m re-
solution were provided by the Hawaii Mapping Research Group
(HMRG). A backscatter synthesis at 60-m resolution was accessed from
the HMRG website (http://www.soest.hawaii.edu/HMRG/multibeam/
index.php). Fisheries logbook data from 2003 to 2014 were provided by
the State of Hawaii Division of Aquatic Resources. For each commercial
bottomfish trip, fishers reported the date caught and fishery reporting
area (Fig. 1) and the total number of pieces, weight, and number of
hours and lines used for each species caught.

2.2. Habitat variables

Bathymetry-derived variables—slope, aspect, and curvature—were
calculated in ArcGIS (V.10.3) with an eight-cell neighborhood
(Burrough and McDonnell, 1998). Terrain ruggedness, referred to as
rugosity hereafter, was calculated with an eight-cell neighborhood
using ArcGIS Benthic Terrain Modeler (Wright et al., 2005) and ranged
from 0 (no variation) to 1 (complete variation). Rugosity was log-
transformed to normalize the positively skewed distribution. Bathy-
metry-derived variables were calculated at two resolutions of bathy-
metry (5-m and 60-m) to provide different scales of habitat features.

Bathymetric position index (BPI; Lundblad et al., 2006) describes a
particular point in relation to the overall landscape similar to the to-
pographic position index (Weiss, 2001; Iampietro and Kvitek, 2002).
BPI was calculated using ArcGIS Benthic Terrain Modeler using scale
factors of 125 (fine-scale BPI) and 1250 (broad-scale BPI), and then
standardized similar to the protocol of Lundblad et al. (2006). Under
standardized bpi units, values> 100 indicate scale-specific ridge-like
structures, values<−100 indicate scale-specific depressions, and va-
lues between −100 and 100 indicate either slopes or flat plains. Maps
of each of the 12 habitat covariates can be viewed in the supplementary
material (Figs. S8–S19).

2.3. Model parameterization

Due to the differences in observed depth ranges for the seven spe-
cies, creating a model that included sites outside of the depth range
would have produced overly confident model predictions. Thus, for

Fig. 1. Location of Bottom Camera Bait Station
(BotCam) sites (green dots) within the main
Hawaiian Islands (located within the solid black box
in insert) deployed during 2007–2015. The State of
Hawaii statistical fishery reporting areas (gray areas)
and current bottomfish restricted fishing areas (bold
outlines) are also shown. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)
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each species, only records within the observed depth range were used,
then randomly partitioned into a training and test dataset with 70% and
30% of the data, respectively. GLMs, GAMs, and BRTs were built on the
training set, and evaluation metrics were calculated on the test dataset.
These three models were chosen to represent models in increasing
complexity, respectively. All models were fitted within the R statistical
environment (R Core Team, 2016).

GLMs and GAMs were fitted with a binomial (Bernoulli) error dis-
tribution with a logit-link. GAMs were fitted using the mgcv R-package.
The pdredge function in the MuMIn R-package was used to compare
combinations of first-order variable models. Corrected Akaike
Information Criterion (AICc) was used as the metric to rank the dif-
ferent candidate models. Delta-AICc values were calculated by sub-
tracting each model’s AICc by the lowest AICc. The “best” model was
chosen as the most parsimonious combination of habitat variables with
“substantial support” (i.e., delta-AICc < 2.0; Burnham and Anderson
(2004)). Of the habitat variables that were chosen in the final GLMs and
GAMs, the only pair of habitat variables that was strongly correlated
(r > 0.8) were slopes calculated at 5 m and 60 m resolutions. Boosted
Regression Trees were fitted using the dismo R-package and customized
code similar to Elith et al. (2008). Optimal model settings were chosen
using 10-fold cross-validation by evaluating factorial combinations of
learning rate (0.001, 0.005, or 0.010), bagging rate (0.50 or 0.75) and
tree complexity (1–5) similar to the protocol of Franklin et al. (2013).
The combination of model settings that produced the lowest cross-va-
lidated residual deviance with>1000 trees (Elith et al., 2008) was
chosen for each of the seven species models.

A residual-autocovariate model following Crase et al. (2012, 2014)
was also implemented to account for possible SAC in the model re-
siduals. First, models were fitted as described in this section, then the
residual on the logit-link scale was calculated for each datum. The RAC
was calculated for each datum as the mean residual using a 1 km
moving window. Models fitted without the RAC are hereafter referred
to as environment-only models (i.e., ENV-GLM, ENV-GAM, and ENV-
BRT) and models fitted with the RAC are hereafter referred to as RAC
models (i.e., RAC-GLM, RAC-GAM, and RAC-BRT).

2.4. Model evaluation

A set of common evaluation metrics of predictive performance was
calculated on the models fitted to the test datasets. Spatial auto-
correlation of the model residuals was evaluated on the test datasets
using Moran’s I (Cliff and Ord, 1981), calculated using the ape R-
package. Moran’s I values range from −1 to +1 with a value of zero
indicating a random spatial pattern. Area Under the Receiving Oper-
ating Curve (AUC) calculates the ability of a model to discriminate
between a presence or absence observation. Values of AUC are coarsely
interpreted as: bad: 0.50–0.59; poor: 0.60–0.69; fair: 0.70–0.79; good:
0.80–0.89; excellent: 0.90–1.0 (Hosmer et al., 2013). Specificity, Sen-
sitivity, and the True Skill Statistic (TSS) were calculated using a
probability threshold that balances sensitivity and specificity similar to
Schr & der and Richter (2000). True Skill Statistic values range from−1
to +1 where values< 0 indicating a predictive model worse than
random, zero indicating an indiscriminate predictive model, and +1
indicating a perfect predictive model. Lastly, percent deviance ex-
plained was calculated as: =Deviance Explained%

− Residual Deviance Null Deviance100%(1 / ).

2.5. Linking model output with fishery catch rates

The model output from the ENV-BRT was chosen to map the species
distribution across the MHI, and then used to link habitat quality (i.e.,
areas with high species probability of occurrence) with fishery catch
rates. Species-specific mean annual catch-per-unit effort (CPUE) over
the 2003–2014 time period was calculated for each statistical fishery
reporting area (Fig. 1) as total catch divided by total line-hours

(Supplementary material, Figs. S1–S7). Because predicted probabilities
were highly clustered and geographically sparse, conventional mean or
median probabilities of occurrence would not have been a re-
presentative index of the upper distribution habitat quality of the
fishing area. Thus, within each fishery reporting area, the probability of
occurrence associated with the 99th percentile was chosen as a coarse
but representative index of habitat quality. A generalized linear mixed
model (GLMM) was used to model the natural logarithm of CPUE of the
jth species in the ith reporting area:

= + + + +CPUE β β SPECIES β PROBOC AREA εln( ) 99ij j ij ij i ij0 1

∼AREA N σ(0, )i AREA
2

∼ε N σ(0, )ij
2

where βj are the species-specific intercepts, 99 _ PROB _ OCij is the 99th

percentile cell value of probability of occurrence for the jth species in
the ith fishery reporting area, and the slope of the linear relationship
between log-CPUE and 99_PROB_OC is denoted as β1. The analysis was
not sensitive to the choice of the percentile threshold, and thus we
concluded that the 99th percentile was representative of the upper
distribution of the probability of occurrence values within a fishery
reporting area. Species-specific landings within a fishery reporting area
were expected to be highly correlated and thus, fishery reporting area
was included as a random effect with variance σAREA

2 representing the
inter-area variation. εij are normally distributed zero-centered residuals
with variance σ2. Psuedo-R2 values were calculated using the r.squar-
edGLMM function in the MuMIn R-package. This method calculates the
marginal (fixed effects only) and conditional (fixed and random effects)
coefficient of determination based on Nakagawa and Schielzeth (2013).

3. Results

3.1. Overall model performance

3.1.1. Environment-only species distribution models
Area Under the Receiving Operating Curve (AUC) and TSS values

trended similarly across species models (Tables 1 and 2, respectively).
Pristipomoides zonatus and the two Etelis species had the best-performing
models and H. quernus models consistently had the lowest predictive
performance across model types. For the P. filamentosus, P. sieboldii, and
E. carbunculus models, the AUC values noticeably increased from GLMs
to GAMs and BRTs. The BRT models had the highest threshold-depen-
dent metrics compared to GLMs and GAMs except for the A. rutilans and
P. zonatus models (Table 2). Consistent across species, percent deviance
explained increased from GLMs to GAMs to BRTs.

3.1.2. Residual autocovariate species distribution models
Model residuals for the environment-only models showed weak

positive spatial autocorrelation with Moran’s I values between 0.02 -
0.18 (Table 1). The RAC models either had Moran’s I values shifted
closer to zero or Moran’s I values of the same magnitude but in the
opposite (negative) direction. Area Under the ROC values all increased
with the inclusion of the RAC (AUC > 0.90) and did not vary much
across model types. Deviance explained was also higher for the RAC
models, with the largest increase in deviance explained between en-
vironment-only GLMs and RAC-GLMs. True Skill Statistic values were
also higher for the RAC models compared to the environment-only
models, however there was no clear pattern in TSS values across model
types (Table 2).

3.2. Habitat associations from ENV-BRT models

3.2.1 Aphareus rutilans
Bathymetry and log-rugosity at 60 m resolution had>60% relative

importance in the BRT models (Fig. 2). A. rutilans was observed at
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depths between 108 and 273 m, with a near linear decrease in prob-
ability of occurrence with increasing depths and increasing probability
of occurrence with log-rugosity at 60 m resolution (Fig. 3). Probability
of occurrence was positively associated with lower slope values at both
scales (Fig. 3; Supplementary material, Fig. S20), a pattern unlike the
other species in the complex.

3.2.2. Etelis spp.
Both Etelis spp. were observed at the deepest depths among the seven

species, with an observed depth range of 175–365 m. Bathymetry and
backscatter were consistently important variables in the BRTmodels, as well
as log-rugosity at 60 m (Fig. 2). Ridge-like features at fine scales were as-
sociated with E. carbunculus occurrence whereas ridge-like features at broad
scales were associated with E. coruscans occurrence (Fig. 3; Supplementary
material, Fig. S21). Probability of occurrence for both species increased near
linearly with depth and backscatter (Fig. 3). Slope at both resolutions were
more important for E. carbunculus than E. coruscans, with higher prob-
abilities of occurrence associated with higher slope values (i.e., slope> 30°;
Fig. 3; Supplementary material, Fig. S20).

3.2.3. Hyporthodus quernus
There were no habitat variables that were especially important for

the H. quernus BRT model (Fig. 2). The observed depth range was be-
tween 81 and 264 m, with peak probability of occurrence at approxi-
mately 175 m (Fig. 3). Probability of occurrence increased linearly with
backscatter and was greater in areas with slopes> 25° and lower va-
lues of log-rugosity, both at 5-m and 60-m scales (Fig. 3; Supplementary
material, Fig. S20). Ridge-like features at broad scales were also asso-
ciated with H. quernus occurrence (Supplementary material, Fig. S21).

3.2.4. Pristipomoides spp.
Bathymetry, broad-scale BPI, backscatter, and slope and log-rug-

osity at 60 m resolution were the most important variables for P. fila-
mentosus and P. sieboldii (Fig. 2). Pristipomoides filamentosus had the
shallowest observed presence at 41 m, whereas P. sieboldii and P. zo-
natus had deeper depth ranges with peaks at approximately 250 and
175 m, respectively (Fig. 3). Slope at 60 m resolution had the highest
relative importance for the P. zonatus BRT model across species models
(Fig. 2), with slopes> 30° associated with higher probabilities of

Table 1
Moran’s I of model residuals, Area Under the Receiver Operating Curve (AUC), and percentage of deviance explained for the environment-only (ENV) and residual autocovariate (RAC)
models across model types–Generalized Linear Models (GLM), Generalized Additive Models (GAM), and Boosted Regression Trees (BRT)–and species. Species codes: ARU (Aphareus
rutilans), ECA (Etelis carbunculus), ECO (E. coruscans), HQU (Hyporthodus quernus), PFI (Pristipomoides filamentosus), PSI (P. sieboldii), and PZO (P. zonatus).

Species-Model Code Moran's I AUC % Deviance Explained

GLM GAM BRT GLM GAM BRT GLM GAM BRT
ARU-ENV 0.03 0.04 0.06 0.79 0.80 0.78 17 19 28
ARU-RAC −0.04 −0.07 −0.08 0.94 0.96 0.96 56 66 51

ECA-ENV 0.18 0.10 0.13 0.78 0.85 0.84 19 36 45
ECA-RAC −0.01 −0.02 0.01 0.95 0.95 0.92 56 61 67

ECO-ENV 0.09 0.08 0.13 0.80 0.83 0.83 25 34 46
ECO-RAC −0.07 −0.08 −0.05 0.93 0.92 0.93 57 65 68

HQU-ENV 0.08 0.04 0.08 0.71 0.72 0.73 10 33 30
HQU-RAC −0.07 −0.05 −0.14 0.97 0.93 0.95 59 69 55

PFI-ENV 0.09 0.09 0.07 0.73 0.77 0.79 12 23 33
PFI-RAC 0.01 0.01 −0.05 0.92 0.93 0.91 48 56 44

PSI-ENV 0.09 0.07 0.06 0.73 0.77 0.81 14 23 38
PSI-RAC −0.05 −0.07 −0.04 0.93 0.93 0.92 46 53 55

PZO-ENV 0.03 0.02 0.03 0.88 0.88 0.90 30 45 58
PZO-RAC 0.01 −0.07 −0.08 0.96 0.97 0.95 61 60 57

Table 2
Threshold-dependent True Skill Statistic (TSS), sensitivity, and specificity for environment-only (ENV) and residual autocovariate (RAC) models across model types–Generalized Linear
Models (GLM), Generalized Additive Models (GAM), and Boosted Regression Trees (BRT)–and species. Threshold chosen to balance model specificity and sensitivity based on (Schröder
and Richter, 1999). Species codes: ARU (Aphareus rutilans), ECA (Etelis carbunculus), ECO (E. coruscans), HQU (Hyporthodus quernus), PFI (Pristipomoides filamentosus), PSI (P. sieboldii), and
PZO (P. zonatus).

Species-Model Code Threshold TSS Sensitivity/Specificity

GLM GAM BRT GLM GAM BRT GLM GAM BRT

ARU-ENV 0.10 0.10 0.06 0.46 0.48 0.40 0.73/0.74 0.73/0.74 0.71/0.70
ARU-RAC 0.07 0.06 0.07 0.70 0.77 0.80 0.86/0.84 0.89/0.88 0.90/0.90

ECA-ENV 0.32 0.32 0.30 0.46 0.46 0.50 0.72/0.73 0.72/0.73 0.75/0.75
ECA-RAC 0.29 0.29 0.30 0.73 0.75 0.67 0.86/0.87 0.87/0.88 0.84/0.83

ECO-ENV 0.22 0.24 0.43 0.44 0.52 0.54 0.74/0.72 0.77/0.76 0.78/0.77
ECO-RAC 0.22 0.22 0.24 0.77 0.74 0.66 0.89/0.88 0.87/0.87 0.83/0.83

HQU-ENV 0.08 0.08 0.04 0.22 0.24 0.30 0.63/0.61 0.63/0.62 0.66/0.65
HQU-RAC 0.06 0.06 0.07 0.79 0.75 0.77 0.90/0.89 0.87/0.88 0.88/0.89

PFI-ENV 0.32 0.36 0.33 0.34 0.40 0.42 0.68/0.67 0.69/0.70 0.72/0.76
PFI-RAC 0.32 0.32 0.29 0.66 0.68 0.67 0.83/0.83 0.84/0.84 0.84/0.83

PSI-ENV 0.17 0.17 0.16 0.38 0.48 0.52 0.69/0.69 0.73/0.74 0.76/0.76
PSI-RAC 0.15 0.15 0.14 0.74 0.69 0.63 0.87/0.87 0.85/0.84 0.81/0.82

PZO-ENV 0.10 0.10 0.08 0.64 0.64 0.56 0.82/0.82 0.85/0.82 0.79/0.78
PZO-RAC 0.07 0.07 0.07 0.83 0.84 0.76 0.92/0.91 0.92/0.92 0.88/0.88
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occurrence. The association with slope for the other two Pristipomoides
species were similar, but were less important (Fig. 2). Broad-scale BPI
was an important variable especially for P. filamentosus, with higher
occurrences associated with broad-scale ridges.

3.3. Species distribution maps

The 12 habitat layers were inputted into the BRT models for each
species to produce spatial distribution maps of probability of occur-
rence across the MHI between 50 and 400 m (Supplementary material,
Figs. S22–S28). As an example, Fig. 4 highlights a popular fishing area,
Penguin Banks, off the southwestern coast of Molokai island. The bot-
tomfish restricted fishing area in Penguin Banks (solid black rectangle,
Fig. 4) encapsulates hotspots of probability of occurrence for most of
the species complex. Species distribution map layers for each species
across the MHI at 60 m resolution can be accessed in the Dryad Digital
Repository (http://www.datadryad.org).

3.4. Linking model output with fishery management zones

The GLMM including both species and habitat suitability (i.e., 99th

percentile predicted probability of occurrence) fitted the data with
reasonable model fit, with a marginal (fixed effects only) pseudo-R2 of
0.48 and a conditional (random and fixed effects) pseudo-R2 of 0.76.
The 99th percentile probability of occurrence was significantly posi-
tively related to log-CPUE with a slope estimate of 1.66 (SE: 0.242,
p < 0.001), meaning an average 1.66 increase in log-CPUE across the
range of probability of occurrence. The positive log-linear slope means
that CPUE increases exponentially across the range of habitat suit-
ability, and the magnitude of this increase is scaled by the species in-
tercepts. For example, E. coruscans and P. filamentosus had higher in-
tercepts in the model relative to the other species, and thus the largest
scaling of the species complex (Fig. 5), whereas H. quernus and A. ru-
tilans had the smallest scaling.

4. Discussion

Across species and model types for the environment-only models,
depth, slope, BPI, rugosity, and backscatter described the majority of
the habitat associations. Depth was an important habitat predictor

among the 12 covariates, with species occupying different depth ranges
(). Bathymetry is a common descriptor of habitat among snapper spe-
cies globally (Martinez-Andrade, 2003) and was a good predictor of
occurrence for deepwater snappers in the western central Pacific
(Gomez et al., 2015). Previous work on habitat associations for the
Etelis and Pristipomoides species in Hawaii also showed depth as the
most important habitat predictor (Misa et al., 2013; Moore et al., 2016).
From our analysis, the species complex can be segregated by depth,
with P. filamentosus having the shallowest distributions, the two Etelis
spp. occupying deeper areas> 200 m, and the other species having
intermediate depth distributions. The differences in depth ranges be-
tween the Etelis spp. and P. filamentosus is reflective of bottomfish catch
composition in the Pacific (Ralston and Polovina, 1982; Ralston and
Williams, 1998).

Rugosity and backscatter were important habitat features for each
of the seven species highlighting the importance of quantifying struc-
tural complexity when characterizing habitat. The rugosity metric cal-
culated in our study was the best approximation for habitat complexity,
and the incorporation of the two spatial scales allowed for different
levels of habitat complexity to be analyzed. Observations from sub-
mersible dives have noted the importance of natural cavities and the
complexity of the substrate as predator refugia (Kelley et al., 2006). The
inclusion of local habitat features generally increases model fit and
performance (Mitchell et al., 2001; Thompson et al., 2012), however is
subject to differences in the ecology and life history of the species
(Mitchell et al., 2001). Including local habitat variables like substrate
type and porosity, possibly garnered from the video at each location,
may have further increased the predictive power of the models, how-
ever would have complicated the use of these models to produce species
distribution maps.

Raised physical structures like ridges, banks, and seamounts were
also important habitat features for many of these species, specifically
for E. coruscans and P. filamentosus. High relief underwater structures
are of particular interest to fisheries because, though not always evi-
dent, some may concentrate or retain biological productivity due to
various oceanographic processes (Pitcher et al., 2007). Across all spe-
cies, regardless of the importance of broad-scale BPI, higher prob-
abilities of occurrence were associated with broad-scale ridge-like
structures rather than broad-scale depressions. The restricted fishing
area southwest of the island of Niihau encapsulates such a raised
physical feature (Supplementary material, Figs. S22–S28) as well as the
“fingers” in the restricted fishing area at Penguin Banks (Moore et al.,
2016). Both Etelis spp. and P. filamentosus had high predicted prob-
abilities of occurrences around these features, but at different depths,
with the Etelis spp. having deeper distributions than P. filamentosus.
Ralston et al. (1986) observed E. coruscans and P. filamentosus ag-
gregated near underwater headlands but at different depths. These
raised physical features, as well as the steep drop-offs associated with
the island slope were consistent hotspots of predicted bottomfish oc-
currence.

High-relief is generally an important habitat feature for adult
snappers and groupers (Ralston et al., 1986; Sluka et al., 2001). Un-
expectedly, slope was not a consistently important habitat variable
across species models. This result is also concurrent with habitat-based
species distribution models of western central Pacific snappers from
Gomez et al. (2015) and earlier work from Penguin Banks off the
southwest coast of the island of Molokai (Moore et al., 2016). Slope had
intermediate importance across models with the exception of P. zonatus
where slope was the most important habitat variable in the ENV-BRT
(Fig. 2). Although outside of the scope of this study, the distribution of
bottomfishes is likely influenced by their prey distributions. Ralston
et al. (1986) reported higher catch rates of P. filamentosus on the up-
current sides of high-relief features. Current flow in high-relief areas
has been hypothesized to aggregate prey (Haight et al., 1993). The
biophysical relationship between oceanographic currents and bottom-
fish aggregations was partly addressed with the slope and BPI variables,

Fig. 2. Percent relative contributions of each habitat covariate based on environment-
only Boosted Regression Trees models fitted for each species. BPI refers to bathymetric
positioning index. Species codes: ARU (Aphareus rutilans), ECA (Etelis carbunculus), ECO
(E. coruscans), HQU (Hyporthodus quernus), PFI (Pristipomoides filamentosus), PSI (P. sie-
boldii), and PZO (P. zonatus).
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however information on surface and bottom currents unavailable in this
study could have been particularly insightful.

The connection between benthic habitat associations and feeding
behavior is important for this species complex, as the observations of
bottomfishes in this study were collected just off the bottom, whereas
bottomfishes are usually fished at depths higher in the water column
where they are presumably feeding. Thus, the positive relationship
between log-CPUE and probability of occurrence suggests concurrence
between the spatial distributions of fishing and BotCam observations,
bolstering the applicability of our results to fishery management. For
example, habitat variables can be related to catch rates when standar-
dizing CPUE (Bigelow et al., 2002; Maunder et al., 2006; Bigelow and
Maunder, 2007).

The use of a wide range of modelling frameworks in this study
showed the advantages of relatively novel machine-learning ap-
proaches in niche-based modelling. This work contributes to the ex-
amples of BRTs in niche-based modeling (e.g., Leathwick et al., 2006;
Froeschke and Froeschke, 2011; Compton et al., 2012; Franklin et al.,
2013; Moore et al., 2016) popularized by Elith et al. (2008). The in-
crease in model complexity characteristic of GAMs and BRTs (e.g., non-
linear relationships, variable interactions) did increase the deviance
explained, but its effect on predictive performance was varied. Pre-
dictive performance metrics did increase from GLMs to GAMs to BRTs

in general, but for some species like A. rutilans and P. zonatus, predictive
performance was similar across model types. In these cases, near-linear
relationships for key habitat variables (e.g. depth, slope, backscatter)
could have been approximated by GLMs just as well as GAMs or BRTs
(Fig. 3).

A plethora of methods to account for spatial autocorrelation in niche
modelling include autoregressive models, GLMMs, GAMMs, spatial ei-
genvector mapping, and autocovariate regressions as used in our study
(see review by Dormann et al., 2007). The advantages of the RAC
models were better performing predictive models with higher deviance
explained compared to their environment-only model counterparts.
Because residual spatial autocorrelation was relatively low under en-
vironment-only models, accounting for the spatial autocorrelation using
the RAC approach served to more to increase the predictive perfor-
mance of the model and less to ensure that the spatial independence of
residuals assumption was met. Extrapolation in space or interpolation
of non-sampled areas using the current methods used to correct for SAC
is problematic due to the assumption of transferability of non-linear and
interactive effects, as well as the variance-covariance structure
(Dormann et al., 2007). Augustin et al. (1996) used a Gibbs sampler to
predict the distribution of species in non-surveyed grids, however
convergence is not guaranteed and such an approach may be sensitive
to initial conditions (Dormann, 2007). Crase et al. (2012, 2014) used

Fig. 3. Partial fitted plots of bathymetry, log-rug-
osity (60 m-scale), backscatter, and slope (60 m-
scale) across environment-only model
types—Generalized Linear Models (GLM; black),
Generalized Additive Models (GAM; orange), and
Boosted Regression Trees (BRT; blue)—and species.
Fish illustrations by Les Hata©, Hawaii Department
of Land and Natural Resources. (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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the RAC approach using an example in which the data were structured
in a grid and every cell in the grid had an observation (presence or
absence). Raphael et al. (2015) used the RAC-BRTs to model marbled
murrelet (Brachyramphus marmoratus) along a nearly contiguous coastal
domain on the US Northwest Coast including Puget Sound. In these
examples, the domains of the samples were relatively continuous in
space, and thus predicted species distribution maps could be created
directly. We provided the results from the RAC models to highlight the
value of the method, however the most pragmatic predictions for in-
terpolating cells in our spatial domain came from the environment-only
models.

Not addressed in our work was the habitat associations of juvenile
bottomfish populations. The BotCam video surveys were initially pur-
posed to monitor adult populations, however the size ranges observed
in these deployments also included pre-adult stages of bottomfishes
(Misa et al., 2013). Future research priorities should focus on deli-
neating juvenile habitat associations, especially in relation to their
adult counterparts. The most extensive work on juvenile habitat asso-
ciations of Hawaiian bottomfishes was conducted for P. filamentosus
observed in relatively shallow waters on the islands of Oahu, Maui, and
Hawaii Island over low relief sandy or rocky substrates and Halimeda
spp. beds (Parrish, 1989; Moffitt and Parrish, 1996; Parrish et al., 1997;
Misa et al., 2013). Juvenile E. coruscans have been observed in low-
relief rocky bottoms between the islands of Maui and Molokai (Misa
et al., 2013). There is some evidence that the overlap in juvenile and
adult habitat associations range from similar (e.g., Etelis spp.; Ikehara,
2006) to divergent (e.g., P. filamentosus; Parrish, 1989). The merging of

juvenile and adult habitat ranges would help better define Essential
Fish Habitat and Habitat Areas of Particular Concern for the Hawaiian
Deep Seven Bottomfishes.

5. Conclusions

Despite their current/potential economic importance in many Indo-
Pacific nations, deepwater snappers and groupers are relatively un-
derstudied species (Newman et al., 2016). Our study refined the habitat
associations for adult Hawaiian Deep Seven Bottomfishes, the product
being a high-resolution habitat-based mapped distribution for each of
the species across the entire main Hawaiian archipelago. For most of
these species, information on habitat associations contributes to the
current dearth of life history information and research attention in
general. As useful as these models are in highlighting ecological habitat
associations, they can also provide the foundation for other fisheries
management-driven questions. The model-based maps clearly showed
hotspots of bottomfish occurrence and can be used to more clearly
delineate Essential Fish Habitat and Habitat Areas of Particular Concern
for these species in the main Hawaiian Islands (Parke, 2007; Moore
et al., 2016). These habitat models can be applied to the design of
fisheries-independent surveys and can also provide useful insight to
fishery managers relating to the effectiveness of the placement of
marine protected areas.

Fig. 4. Predicted probability of occurrence within
Penguin Banks (textured box in inset) for each spe-
cies using environment-only Boosted Regression
Trees. The rectangle represents a bottomfish re-
stricted fishing area. Fish illustrations by Les Hata©,
Hawaii Department of Land and Natural Resources.
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